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ABSTRACT: This study uses fixed buoy time series to create an algorithm for sea surface temperature (SST) cooling
underneath a tropical cyclone (TC) inner core. To build predictive equations, SST cooling is first related to single variable
predictors such as the SST before storm arrival, ocean heat content (OHC), mixed layer depth, sea surface salinity and
stratification, storm intensity, storm translation speed, and latitude. Of all the single variable predictors, initial SST before
storm arrival explains the greatest amount of variance for the change in SST during storm passage. Using a combination of
predictors, we created nonlinear predictive equations for SST cooling. In general, the best predictive equations have four
predictors and are built with knowledge about the prestorm ocean structure (e.g., OHC), storm intensity (e.g., minimum
sea level pressure), initial SST values before storm arrival, and latitude. The best-performing SST cooling equations are
broken up into two ocean regimes: when the ocean heat content is less than 60 kJ cm22 (greater spread in SST cooling val-
ues) and when the ocean heat content is greater than 60 kJ cm22 (SST cooling is always less than 28C), which demonstrates
the importance of the prestorm oceanic thermal structure on the in-storm SST value. The new equations are compared to
what is currently used in a statistical–dynamical model. Overall, since the ocean providing the latent heat and sensible heat
fluxes necessary for TC intensification, the results highlight the importance for consistently obtaining accurate in-storm up-
per-oceanic thermal structure for accurate TC intensity forecasts.

SIGNIFICANCE STATEMENT: The ocean provides the heat and moisture necessary for tropical cyclone (TC) in-
tensification. Since the heat and moisture transfer depend on the sea surface temperature (SST), we create statistical
equations for the prediction of SST underneath the storm. The variables we use combine the initial SST before the
storm arrives, the upper-ocean thermal structure, and the strength and translation speed of the storm. The predictive
equations for SST are evaluated for how well they improve TC intensity forecasts. The best-performing equations can
be used for prediction in operational statistical models, which can aid intensity forecasts.
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1. Introduction

It is well known that the ocean provides the heat and mois-
ture necessary for tropical cyclone (TC) intensification
through surface sensible and latent heat fluxes (combined re-
ferred to as enthalpy fluxes), (e.g., Malkus and Riehl 1960;
Emanuel 1986). Since it is extremely difficult to directly mea-
sure the turbulent fluxes in the surface layer of a TC due to
the dangers of flying crewed aircraft close to the sea surface,
the sensible (Qs) and latent heat (Ql) fluxes are often parame-
terized by the bulk aerodynamic formulas [Eqs. (1) and (2),
respectively]:

Qs 5 racpChU10(SST 2 T10), (1)

Ql 5 raLyCeU10(qs 2 q10), (2)

where ra is the density of dry air, Ch 5 Ce are the exchange
coefficients for sensible heat and latent heat fluxes, respectively

[values can be derived from Zhang et al. (2008)]; cp is the
specific heat of dry air; Ly is the latent heat of evaporation;
T10 and SST are the 10-m air and sea surface temperature,
respectively; and q10 and qs are the 10-m and sea surface
specific humidity, respectively. In Eq. (1), the sensible heat
flux is directly proportional to the thermal disequilibrium
(DT) between the ocean surface and the lower atmosphere. In
Eq. (2), the latent heat flux is directly proportional to the
moisture disequilibrium (Dq) between the ocean surface and
the lower atmosphere, with qs typically derived from the SST
using the Clausius–Clapeyron equation.

Since the SST directly influences the surface enthalpy fluxes,
it is an important quantity to accurately predict for in-storm
conditions. More broadly, recent work has highlighted the
importance of the moisture disequilibrium, for TC intensifi-
cation because it is the dominant metric for variability in the
latent heat fluxes (e.g., Shay and Uhlhorn 2008; Cione 2015;
Jaimes et al. 2015; Jaimes de la Cruz et al. 2021). A recent
study by Jaimes de la Cruz et al. (2021) highlighted the higher
sensitivity of the fluxes to Dq at higher surface wind speeds.
That is, as wind speeds increase, changes with Dq causeCorresponding author: Joshua B. Wadler, wadlerj@erau.edu
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significantly higher change to the latent heat flux than changes
to the wind speed alone (see Fig. 4 in that paper).

It has been known for many decades that an SST cold wake
forms underneath and behind a TC (e.g., Suda 1943; Fisher
1958; Leipper 1967; Shay et al. 1992; Cione and Uhlhorn 2003;
D’Asaro et al. 2007; Mrvalijevic et al. 2013). In most cases,
the cold wake is due to upwelling and entrainment of cold
subsurface waters driven by horizontal divergence of surface
currents as well as instantaneous wind stirring and shear-
induced mixing by wind-driven currents (e.g., Hidaka and
Akiba 1955; Elsberry et al. 1976; Price 1981; Shay et al. 1998).
SST cooling due to shear-driven mixing can depend on the
presence of oceanic eddies (e.g., Shay et al. 2000; Jaimes and
Shay 2009, 2010; Lin et al. 2009, 2013) as well as upper-ocean
stratification (Price et al. 1994; Chan et al. 2001; Price 2009;
Sanford et al. 2007), and areas where strong vertical salinity
gradients impede mixing during TC passage (e.g., Wang et al.
2011; Balaguru et al. 2018; Rudzin et al. 2018; Hlywiak and
Nolan 2019). In some cases over deep warm oceanic regimes,
where entrainment cooling is small (e.g., warm eddies), air–
sea enthalpy fluxes can cause most of the sea surface cooling
(Jaimes et al. 2015).

While the formation of a SST cold wake has received signif-
icant attention in the literature, and the upper-ocean pro-
cesses in TC conditions are understood, the SST evolution
directly underneath the storm is less studied. Cione and
Uhlhorn (2003) used buoy time series from 23 TCs to show
that the magnitude of observed in-storm SST cooling is re-
lated to TC intensification, and that errors in inner-core SSTs
on order of 18C can lead to errors in the enthalpy fluxes of
over 40%. Nevertheless, predicting the in-storm SST remains
a challenge for coupled models, which necessitates increased
targeted ocean observations (e.g., Chen et al. 2017; Mogensen
et al. 2017). Using linear theory, Lu et al. (2021) built upon
the results from Cione and Uhlhorn (2003) by developing a
framework for understanding in-storm SST cooling. Lu et al.
concluded that SST cooling underneath a storm is related to
the initial depth of the mixed layer, the radius of maximum
wind speed and latitude.

While satellite-based infrared radiometers cannot obtain
SST observations under heavily cloudy conditions, microwave
radiometers can penetrate the clouds to observe SST. However,
their signals can be attenuated by rainy in-storm conditions.
Thus, satellite-based SST products have known limitations
under either cloudy or rainy in-storm conditions, which make
their estimates unreliable in resolving upwelling-induced SST
cooling in TCs (e.g., Huang et al. 2021). Additionally, the
daily time interval of satellite-based SST products is not opti-
mal for TC applications. For decades, the ability to obtain
instantaneous targeted in-storm SST measurements (as well
as prestorm and poststorm measurements) from crewed air-
craft using airborne expendable oceanic profilers (Boyd 1987;
Shay et al. 2011) and dropsondes with integrated infrared
sensors (IRSondes; Zhang et al. 2017) has existed. It is also
possible to measure the upper-ocean thermal structure using
long-lasting instruments deployed prior to a storm such as
Air-Launched Autonomous Micro Observer (ALAMO) floats
(Jayne et al. 2022; Sanabia and Jayne 2020), EM-APEX

floats (Sanford et al. 2007, 2011; Shay et al. 2019b), ocean
drifters (Goni et al. 2017; Domingues et al. 2019), ocean gliders
(Testor et al. 2019; Domingues et al. 2021; Le Hénaff et al.
2021), and Saildrones (Meinig et al. 2019; Miles et al. 2021).
However, these instruments do not translate with a TC, so the
continuous measurement of SSTs under a moving TC remains
elusive.

To supplement the scarcity of in-storm SST measurements,
statistical relationships between SST cooling with the pres-
torm oceanic structure and environmental conditions can be
used (e.g., Da et al. 2021). Dare and McBride (2011) and Mei
and Pasquero (2013) use gridded analyses to statistically eval-
uate SST cooling, but did not focus on in-storm conditions.
The derived in-storm SST used to guide intensity forecasts in
the Statistical Hurricane Intensity Prediction Scheme (SHIPS)
database (DeMaria et al. 2005) currently uses a predictive
equation based on time series of SST from fixed-location buys
that are discussed in Cione and Uhlhorn (2003). This predic-
tive equation of SST is a linear function of a TC’s latitude,
translation speed, and the prestorm SST (discussed further
in section 3). With an expanded database, the goal of this
manuscript is to derive new, nonlinear predictive equations
for in-storm SST cooling and to document how the new equa-
tions change the forecast of SST and predicted intensity
change. The remaining manuscript will be organized as fol-
lows: section 2 will discuss the data sources used to create the
predictive equations. Section 3 will discuss how each environ-
mental and ocean structure variable influences the SST cool-
ing as well as the impact of utilizing nonlinear equations.
Section 4 will summarize the results with a discussion about
the strengths and limitations of our statistical approach.

2. Data and methodology

a. Tropical cyclone buoy database

Time series of SST are obtained from the Tropical Cyclone
Buoy Database (TCBD; Cione et al. 2000, 2013; Cione and
Uhlhorn 2003; Cione 2015; Wadler et al. 2022). The TCBD
contains postprocessed and quality-controlled near-surface in
situ measurements from the National Data Buoy Center
(NDBC; Gilhousen 1988, 1998) and Coastal-Marine Auto-
mated Network (C-MAN) platforms [see Cione et al. (2000)
for details regarding quality control]. The platforms are pri-
marily located in the western Atlantic Basin, Gulf of Mexico,
and the Caribbean Sea (Fig. 1a). As described in Wadler et al.
(2022), buoy observations in the TCBD are recorded in
hourly increments, with each measurement linked to environ-
mental data from the SHIPS database and information about
TCs from the National Hurricane Center (NHC) Extended
Best Track Database (EBT; Demuth et al. 2006).

The TCBD currently contains data between 1978 and 2017.
The database identifies all NDBC buoy observations that are
south of 358N latitude and within 555 km of a TC center.
Under these criteria, there are 2393 unique time series of
SST. Since the goal of this study is to document the SST evo-
lution near the inner core of a TC, we constrain the closest
physical distance between the TC center and buoy observation

WEATHER AND FORECAS T ING VOLUME 39848

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/20/24 06:29 PM UTC



to a maximum of 75 km. This constraint reduces the number of
time series to 331 and is implemented as a balance between cap-
turing the SST cooling directly in the core of the TC with in-
creasing the representative sample size. The storm tracks that
meet the distance criteria are shown in Fig. 1b. Other physical
distances were tested such as data within 50 and 100 km of a TC
center, which have 207 and 472 time series, respectively. Of
note, we considered constraining distance between the buoy and
TC center by a storm size parameter such as within 1.5 times the
radius of maximum wind speed (RMW). Except for storms with
a small reported RMW (10.1% of the 331 cases where the storm
center was within 75 km of a buoy had a reported RMW of
25 km or smaller), a maximum cutoff distance of 1.5 3 RMW
generally encompasses the same TC inner-core region as the
75-km cutoff distances. In only 2.7% of cases, the RMW is greater
than 200 km which makes the 75-km cutoff more limiting to es-
sentially include only the storm center. Using the 1.5 3 RMW
cutoff as a sensitivity analysis led to slightly reduced correlations
between SST cooling and the individual predictors, as compared
to the 75-km cutoff analysis used in this manuscript (not shown).
Normalizing by the RMW was not used in the final calculations
due to uncertainty with the RMW in the EBT database (Landsea
and Franklin 2013; Davis 2018), especially in earlier years of the
TCBD.

b. Ocean structure and SMARTS climatology

Since the only oceanic metric measured by fixed buoys is
the SST, TCBD observations are matched to ocean structure
variables in the Systematically Merged Atlantic Regional
Temperature and Salinity (SMARTS) Climatology (Meyers
et al. 2014). SMARTS is a 2.5-layer reduced gravity model
with 1=48 resolution that produces daily satellite-based images
of ocean structure. Daily products from SMARTS have been
validated against over 50 000 in situ ocean profiles between
2000 and 2010 [see Meyers et al. (2014) for full details, with
further validation given in Shay et al. (2019a,b)] and the data-
base has been widely used to study air–sea interactions and
upper-ocean evolution in TCs (e.g., Jaimes et al. 2015; Jaimes
de la Cruz et al. 2021; Wadler et al. 2018; Rudzin et al. 2019).
The first year of the SMARTS database is 1998 and because it
is satellite-based, the products do not extend all the way to
the coastline. Thus, statistical relationships containing SMARTS

products have smaller sample sizes than relationships that only
contain TCBD observations.

In the current study, the data from SMARTS are used to
represent the ocean structure prior to storm arrival. We ob-
tain upper-ocean structure variables: mixed layer depth
(MLD; defined as depth where the water is more than 0.58C
cooler than the surface), depth of the 268C isotherm (D26),
and depth of the 208C isotherm (D20). Additionally, we ob-
tain the ocean heat content [OHC; Eq. (3)] which is a parame-
ter for estimating the thermal energy available in the upper
ocean in TCs (also called tropical cyclone heat potential;
Leipper and Volgenau 1972):

OHC 5 r1cp

�z5h

z5h26

[T(z) 2 26]dz, (3)

where r1 5 1026 kg m23 is the reference seawater density, cp
is the specific heat at constant pressure (4.2 kJ kg21 K21),
T(z) is the upper-ocean temperature structure that includes
SST, and h is the sea surface height (in meters). Note that
OHC is integrated to the 268C isotherm here since it is the
temperature typically assumed for tropical cyclogenesis (Palmén
1948) but is not a fundamental physical constraint (Cione 2015).
The SMARTS data are interpolated to the location of the
buoy on the date of storm passage. Sensitivity tests were
conducted using ocean structure variables obtained the day
before storm arrival and did not yield significantly different
results because the analysis uses a window of 65 days focus-
ing on the specific day (not shown). Of note, while this study
uses OHC since it is a readily available metric for ocean heat
in the SMARTS database, Price (2009) suggested that the
mean temperature in the upper 100 m (T100) is a more
direct and robust measurement of the ocean thermal field
for TCs.

In recent years, oceanic barrier layers, freshwater plumes
that mostly appear in river overflow areas such as in the east-
ern Caribbean Sea near the Amazon–Orinoco River plume
and in the Gulf of Mexico near the Mississippi River delta,
have received significant attention in the air–sea interaction
literature. The presence of barrier layers increases the upper-
ocean stability which limits turbulent mixing of cool water
into the mixed layer (e.g., Reul et al. 2014; Rudzin et al. 2017,

FIG. 1. A geographical map of (a) buoy locations (black stars) and (b) storm tracks from the TCBD that were used in
this study. In (b), the tracks are color coded on the basis of maximum TC intensity.
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2018, 2019; Hlywiak and Nolan 2019; Balaguru et al. 2020;
Sanabia and Jayne 2020). Since there is no long-term reliable
database for upper-ocean salinity data, in this study we obtain
satellite-based optimally interpolated sea surface salinity (SSS)
from the Soil Moisture Active Passive (SMAP; Meissner et al.
2014) mission. Data from the SMAP mission have 1=48 resolution
and is produced in 4-day temporal increments. While valuable,
the database only extends back to 2011, which limits the sample
size for comparing with TCBD observations. We also obtain
monthly climatological SSS data from the World Ocean Atlas
2018 (WOA18; Zweng et al. 2018; Garcia et al. 2019). The data
are also 1=48 resolution averaged over the years 1981–2010, which
closely coincides with what is available in the TCBD. The data
are obtained in monthly climatological increments to account
for seasonality of river flow. For both the WOA18 and the
SMAP mission SSS data, the global data are interpolated to the
location of the buoy. Last, since SSS is only a proxy for the effect
of freshwater barrier layers, which increase the stability of the
layer and reduce mixing (Balaguru et al. 2020), we obtain the
daily climatology of reduced gravity [Eq. (4)] from SMARTS
where g1 is reduced gravity, g is the acceleration due to gravity 5
9.81 m s22, and r1 and r2 are the densities of the upper and
lower layers, respectively, which are separated by the 208C
isotherm (Meyers et al. 2014):

g1 5 g 3
r2 2 r1

r2
: (4)

3. Results

To characterize the spatial distribution of SST cooling, each
SST cooling point (difference between maximum SST prior to
storm arrival and SST at every observation time) is put into a
storm-relative bin with a grid spacing of 55 km (Fig. 2a). Each
bin has at least 50 data points, with most having at least 200
data points (Fig. 2c). As mentioned earlier, we did not place
data into a normalized storm-size coordinate system (i.e.,
relative to the RMW) using the EBT database due to known
errors with its reliability (Davis 2018). Generally, there are
more data to the right of storm motion than to the left of
storm motion. As expected, the maximum SST cooling occurs

in the rear-right quadrant (Fig. 2a), with a maximum amplitude
of 1.18C;400 km behind the storm track. Within the innermost
100 km of the storm center, the SST cooling typically ranges
between 0.58 and 0.88C, depending on the quadrant. In the
direction of storm motion, cooling of 0.58C typically occurs at
;100 km ahead of the storm. With the minimal amount of
SST cooling ahead of the storm motion, there is also little
standard deviation (Fig. 2b). The lack of cooling ahead of
storm motion is consistent with Jacob et al. (2000), who
showed using different ocean mixed layer models that the
cooling is related to the surface friction velocity u*. The
majority of SST cooling variability occurs in the rear-right
quadrant, consistent with where the maximum cooling typi-
cally occurs.

Since the goal of this manuscript is to characterize the SST
cooling underneath the storm center, we define change in
SST as the difference between the maximum observed initial
SST (ISST) prior to storm passage (while the storm is within
555 km of the buoy) with minimum SST within 75 km of the
storm center (the innermost range ring in Figs. 2a,b). The
555-km cutoff was chosen for ISST to ensure fully capturing
any SST cooling due to the TC. Since the change in SST
is always negative, we refer to the magnitude of the difference
as SST cooling throughout the rest of the manuscript which
is a positive number. Of note, the maximum SST prior to
storm arrival is likely taking into account diurnal variations
and may not represent a mean SST. To account for this, we
repeat the analysis using a 24-h averaged SST before storm
arrival (called ISST_Mean; defined as up to when the storm
was within 200 km of the buoy; see section 3d). While this alter-
native definition of ISST may not capture all SST-induced
cooling, it may be more compatible with daily-produced SST
products. This is discussed further in section 3d.

The first step in creating statistical relationships for SST
cooling is to characterize the distribution. Figure 3a shows the
SST cooling compared to the ISST. The majority of SST cool-
ing cases are less than 18C and are in ISST values between 268
and 308C. Generally, most of the distribution for SST cooling
is below 48C. However, there are SST cooling values up to
88C, for a very high ISST value of;328C. A histogram of SST
cooling reveals a gamma-shaped distribution that is peaked

FIG. 2. (a) The spatial distributions of mean storm-relative SST cooling. (b) The standard deviation of the spatial distribution in (a).
(c) The data distribution. In (a) and (b), the range rings are multiples of 75-km distance from the storm center and the arrow represents
the direction of storm motion. Additionally, the 0.58C contour is outlined in (a) and (b). Data within the innermost range ring (75 km) in
(a) and (b) are used to create the predictive equations.
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between 08 and 0.58C of SST cooling with an extended tail out
to 88C (not shown). Further examinations of the SST cooling
distribution show that there is the most spread in SST cooling
in shallow water regions less than 100 m deep, which can re-
duce our predictive skill (Fig. 3b). Additionally, many of these
higher SST cooling cases, which are in the tail of the distribu-
tion, are in shallow water. Since individual oceanic basins
have unique dynamics due to bottom slope of the continental
shelf and differing background currents, we eliminate all cases
of bottom depth less than 100 m in the subsequent analyses in
sections 3a and 3b. There are 174 remaining unique time se-
ries over deep water, of which 87 are matched with data from
SMARTS and 38 are matched with data from SMAP. Sepa-
rate analyses for shallow water conditions are presented in
section 3c.

a. Linear relationships between SST cooling with single
variable predictors

The relationship between SST cooling and single variable
predictors in water depths greater than 100 m is given in
Fig. 4. The greatest single variable predictor of SST cooling is
ISST with a linear fit having an r2 value 0.19 and a mean abso-
lute error (MAE) of 0.78C (Fig. 4a). Generally, there is an in-
creased spread in SST cooling magnitudes with increased
ISST. While a linear fit is able to capture the general trend of
increasing average SST cooling with higher ISST values, it is
unable to represent the higher SST cooling that is observed in
cases with ISST greater than 308C. Furthermore, the linear fit
never predicts SST cooling greater than 28C. While ISST val-
ues greater than 308C are relatively rare, the large cooling
magnitudes suggest that they are more often associated with
shallow skin temperatures that are not representative of a
mean temperature in the oceanic mixed layer. Additionally,
the large spread of SST cooling at high ISST values implies
cases have inhomogeneous subsurface ocean structures or dif-
ferent environmental setups, which motivates the use of mul-
tivariable equations to predict SST cooling. Higher-order

polynomial regressions such as quadratic and cubic functions
can better capture the increased SST cooling at higher ISST
values and generally increase the r2 value and decrease the
MAE of the best-fit equation. However, a quadratic fit is not
a reasonable regression because, as shown in Fig. 4a, it is an
increasing function up to 288C followed by a decreasing func-
tion which is not physically based. The cubic function is
monotonically decreasing and can capture the observed vari-
ability at both high and low ISSTs.1 As a single variable pre-
dictor, the third-order polynomial predicts SST cooling with
an r2 of 0.36 and a MAE of 0.588C, which is substantially
improved over the linear regression fit. Importantly, it also
captures relevant physics such as the larger amounts of SST
cooling that can occasionally occur at higher ISSTs (i.e.,
above 308C) that represent a skin temperatures as well as
the smaller amounts of SST cooling that can occasionally
occur at lower ISSTs (i.e., below 268C) which tend to occur
at higher latitudes above 298N (not shown) in more stratified
(stable) ocean thermal structures. Consequences of using a
cubic regression model for ISST are discussed throughout the
manuscript.

The relationship between SST cooling with commonly used
metrics of ocean available heat such as OHC, mixed layer
depth (MLD), and depth of the 268C isotherm (D26) are
given in Figs. 4b–d. Recall that these have a smaller sample
size since SMARTS analyses do not extend to the shore. A
linear fit between OHC and SST cooling yields an r2 value of
0.063 and a MAE of 0.428C. While not offering a lot of predic-
tive skill, OHC’s relationship to SST cooling has interesting
features. All of the cases of SST cooling greater than 38C
(albeit only three time series) occur in OHC values less than

FIG. 3. A scatterplot of SST cooling within 75 km of a storm center with (a) initial SST and (b) ocean bottom depth. In each plot, the linear
best fit line is given with the legend containing the coefficient of determination (r2) and mean absolute error (MAE).

1 Of note, we tested other types of functions such as exponential
fits to create the statistical relationships (not shown), but the third
order polynomial consistently produced the most robust statistics
and was particularly skillful at predicting SST cooling at high val-
ues of ISST.
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FIG. 4. Scatterplots of the relationship between SST cooling and (a) initial SST, (b) ocean
heat content, (c) mixed layer depth, (d) depth of the 268C isotherm, (e) climatological sea sur-
face salinity from SMAP, (f) climatological reduced gravity, (g) minimum sea level pressure,
(h) maximum 10-m wind speed, (i) TC latitude, and (j) TC translation speed. In each plot, the
linear best fit line is given with the legend containing the coefficient of determination (r2) and
mean absolute error (MAE). In (a), the best fit quadratic and cubic functions are also shown.
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60 kJ cm22. Furthermore, there is only one case of SST cool-
ing greater than 18C for OHC values greater than 60 kJ cm22.
Combined, this yields a good “rule of thumb” that SST cool-
ing is generally not going to exceed 18C for OHC values
greater than 60 kJ cm22. Similar, but less distinct, characteris-
tics are noticed with MLD and D26, with the break in the dis-
tributions at 50 and 75 m, respectively.

SSS from the SMAP mission (Fig. 4e) indicates that a larger
SSS (a proxy for reduced stability) is associated with more
SST cooling with an r2 value of 0.0074 and a MAE of 0.558C.
However, the sample size in Fig. 4e is limited due to the
SMAP being launched in 2011. Similarly, the SSS from the
WOA (not shown) shows a weak trend due to a cluster of
data points between 35 and 37 psu. The daily climatology of
reduced gravity from SMARTS (Fig. 4f; recall that the daily
climatologies are for the average stratification at the upper
thermocline which is assumed to be represented by the 208C
isotherm depth) also shows that lower reduced gravity (less
stable thermocline) is associated with more cooling with an r2

value of 0.015 and a MAE of 0.468C. However, given the limi-
tations of using climatological data, along with the weak sta-
tistical relationships, we do not include SSS or reduced
gravity in our higher-order predictive equations. Neverthe-
less, the authors recommend field campaigns to obtain long-
term time series of SSS so that it can be included in statistical
analyses.

Since the projection of the wind stress onto the ocean sur-
face initiates the shear-induced oceanic mixing, it is unsurpris-
ing that linear relationships indicate that lower minimum sea
level pressures (MSLPs; Fig. 4g) and higher 10-m maximum
wind speeds (MAXWS; Fig. 4h) leads to higher SST cooling
amounts. However, as with the oceanic variables, the predic-
tive skill is limited with r2 values for MSLP and MAXWS of
0.09 and 0.086, respectively. Additionally, there is no dichot-
omy in the distributions with SST cooling amounts greater
than 38C observed at all ranges of the observed TC intensity
spectrum.

SST cooling is also related to TC latitude (Fig. 4i). Even
though the r2 for the latitude distribution is 0.051, the distribu-
tion (like with OHC and MLD) provides a good rule of
thumb with all but one case of SST cooling greater than 28C
occurring north of 258N. The larger SST cooling amounts in
the northern latitudes are likely because the shear-induced
mixing and SST cooling are related to wind-forced near-
inertial oscillations (e.g., Shay et al. 1992, 1998) whose period
decreases as latitudinal distance from the equator increases
(indicative of more mixing). Additionally, the upwelling
response (Ekman-like dynamics) also depends on latitude,
which may be a leading order during in-storm conditions, be-
fore the near-inertial cycle begins (Jaimes and Shay 2015).
Last, SST cooling is related to TC translation speed (Fig. 3j).
Unsurprisingly, slower-moving storms tend to have greater
amounts of cooling than quicker moving storms. Translation
speed provides the second highest explanation of SST cooling
variance with a r2 value of 0.11. However, cases of cooling
greater than 28C extend over a wide range of values, between
0 and 10 m s21.

b. Relationship between SST cooling with
multiple predictors

The skill of predictive equations for SST cooling was as-
sessed for all possible linear function combinations of two,
three, four, and five variables shown in Fig. 4. Coefficients of
determination for combinations of two, three, and four varia-
bles are given in Table A1 in the appendix. Combinations of
four variables were subjectively determined to be best at sta-
tistically capturing the relevant physics of SST cooling without
overfitting (i.e., obtaining an r2 of approximately 1), particu-
larly when piecewise equations are used (discussed below).
An example of the statistics for four variables (ISST, OHC,
MLD, and MSLP) is given in the first column of Table 1. Pre-
dicted SST cooling from the linear combination of these four
variables has an r2 of 0.44, MAE of 0.368C, maximum predic-
tive error of 2.48C, and 79.3% of cases with predictive error
less than 0.58C. While a marked improvement over any of the
individual variables in Fig. 4, there are still large errors up to
2.48C, which can be problematic for statistical forecasting of
TC intensity.

Recall from Fig. 4a that the maximum predicted SST cool-
ing from a linear function over realistic ISST conditions is
;28C. Furthermore, none of the linear relationships for pre-
dictors in Fig. 4 predicts SST cooling greater than 38C over
the range of observed predictor values. To overcome this limi-
tation, the same four predictors in the first column of Table 1
are combined, but with a third-order fitting for ISST (second
column in Table 1). Of note, when we use a third-order fitting
for ISST, we obtain multiple cross-terms that capture the non-
linear relationship between the predictors. As with the single
ISST predictor in Fig. 4a, changing ISST from a linear to a cu-
bic predictor substantially improves the prediction of SST
cooling with an r2 value of 0.56, MAE of 0.298C, maximum
predictive error of 2.18C, and 88.5% of cases with predictive
error less than 0.58C. Even with the improved values of r2 and
MAE, the largest error is still over 28C.

To reduce the maximum errors in predicted SST cooling,
which occur when there is substantial SST cooling, two sepa-
rate equations were created: one for a high OHC regime
($60 kJ cm22) and one for a low OHC regime (,60 kJ cm22).2

Recall from Fig. 4b that the OHC distribution bifurcates around
60 kJ cm22, which represents a rule of thumb cutoff for cases
with substantial SST cooling. These piecewise functions allow
for a separate SST cooling behavior for the high OHC regime,
where the ocean temperature is warm to a deep enough depth
such that there is only one observed case of SST cooling
greater than 18C. This also allows for a better fitting in the low
OHC regime, where SST cooling greater than 28C is observed
more often. With these two equations, predictive SST cooling

2 Note that to create piecewise functions, we tested creating
piecewise functions using each variable in each equation. Using
OHC to create the piecewise functions consistently led to the most
robust statistics. Consistently, we tested creating piecewise functions
about all OHC values that allow for significant samples using the cur-
rent data sets for high OHC and low OHC regimes (cutoffs between
30 and 80 kJ cm22) and using a cutoff value of 60 kJ cm22 consis-
tently led to the most robust statistics.
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yields an overall r2 value of 0.80, MAE of 0.238C, maximum
predictive error of 1.08C, and 87.4% of cases with predictive
error less than 0.58C. While this leads to a marginal improve-
ment in r2 and MAE over only having a single predictive
equation which is third order in ISST, the piecewise equations
reduce the largest predictive error by half. Thus, the equation
in the last column of Table 1 is considered the best representative

of SST cooling. We identify this as predictive Eq. (1). Given
the length of the predictive equations, they are provided in
Table A2.

The performance of predictive Eq. (1) is given in Fig. 5a.
As shown earlier, all of the situations with SST cooling
greater than 28C occur in the low OHC regime. The most
noteworthy part of the performance of predictive Eq. (1) is

TABLE 1. A comparison of statistics for different versions of the predictive equation for SST cooling containing ISST, OHC, MLD,
and MSLP.

SST_cooling 5 f(ISST,
OHC, MLD, MSLP)

(N 5 87)

Predictive
equation with
all linear terms

Predictive equation with linear
terms except third-order ISST

Two predictive equations with
linear terms except third-order
ISST; equations are piecewise
in OHC about 60 kJ cm22

[predictive Eq. (1)]

Coefficient of
determination (r2)

0.44 0.56 0.80

Mean absolute error (8C) 0.36 0.29 0.23
Maximum predictive

error (8C)
2.4 2.1 1.0

Percent of cases with
predicted SST
error , 0.58C

79.3% 87.4% 87.4%

Equation DSST 5 20.46(ISST) 1
0.013(OHC) 1
20.0066(MLD) 1
0.011(MSLP) 1 1.7

DSST 5 6.48(MSLP) 1 4.25(MLD) 2
0.007(MLD 3 MSLP) 2 2.09(OHC) 1
0.003(OHC 3 MSLP) 2 0.0014(OHC 3

MLD) 1 3.37 3 1026(OHC 3 MLD 3

MSLP) 1 387.02(ISST) 2 0.45(ISST 3

MSLP) 2 0.03(ISST 3 MLD) 1 2.3 3

1024(ISST 3 MLD 3 MSLP) 1
0.042(ISST 3 OHC) 2 1.1 3 1024(ISST 3

OHC 3 MSLP) 2 7.2 3 1025(ISST 3

OHC 3 MLD) 2 5.59(ISST2) 1
0.0079(ISST2 3 MSLP) 2 0.0035(ISST2 3

MLD) 1 0.0013(ISST2 3 OHC) 2 0.028 3

(ISST)3 2 5871.87

Shown in Table A2

FIG. 5. (a) An evaluation of the performance of predictive Eq. (1) and (b) an evaluation of the current algorithm in SHIPS. In both panels
a 1:1 line is drawn, and a best-fit line is also drawn in (b).
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that there are no extreme outliers that would impact intensity
forecasts. Even so, there is reasonable spread among the data
points to indicate the equations are not over fitting. To high-
light the significance of the equation, the performance of the
currently used SST cooling algorithm in SHIPS (linear func-
tion of ISST, translation speed, and latitude) on the current
dataset is shown in Fig. 5b. Most noteworthy is that the cur-
rent equation consistently underpredicts SST cooling when
the actual cooling is above 1.58C, with errors increasing as the
actual SST cooling increases. As shown in Fig. 4a, this is an
unavoidable occurrence with linear fitting for all variables.

With fitting ISST as a third-order function and using piece-
wise equations for OHC established as the best statistical
methods to improve SST cooling forecasts, we evaluated all
possible iterations of 2, 3, 4, and 5 variables. While predictive
Eq. (1) in Table 1 is considered the best performing function,
other notable ones are given in Table 2. All of the equations
in Table 2 are piecewise about an OHC value of 60 kJ cm22

except predictive Eq. (5), which is piecewise about a MSLP
value of 985 mb (more on this below; 1 mb 5 1 hPa). Note
that the equations in Table 2 are not necessarily the top statis-
tical predictions of SST cooling but allow for a diverse set of
variables with the goal of testing their performance on inten-
sity forecasts in the SHIPS model. For example, in all the
equations, switching MSLP and MAXWS usually provide
similar error statistics, but to avoid having equations that cap-
ture the same relevant physics, we only show equations with
MSLP.

Predictive Eq. (2) (first column in Table 2; function of
ISST, OHC, MSLP) is the best overall performing function
that includes only three variables. While, as stated earlier,
equations with four variables provide the best statistical rep-
resentation of SST cooling, predictive Eq. (2) is tested to see
if using four variables provides additional predictive skill for
intensity forecasting. Predictive Eq. (3) generally has the low-
est error statistics. With two ocean structure variables (func-
tion of ISST, OHC, D26, MSLP), it strongly encapsulates
prestorm ocean structure, similar to that in predictive Eq. (1)
(the only difference is MLD versus D26). Predictive Eq. (4)
(function of ISST, OHC, MSLP, LATITUDE) contains the
most diverse variables, capturing the storm intensity, upper-
ocean thermal structure, and latitude. Predictive Eq. (5) (func-
tion of ISST, MSLP, storm translation speed, LATITUDE) is

the only equation to not contain an ocean structure variable
and has lower predictive ability, likely due to this fact. Since
OHC is not included in this equation (which is used to sepa-
rate the piecewise in all other equations), the piecewise equa-
tions are separated about a MSLP of 985 mb, which was
determined to be best for these sets of variables. Predictive
Eq. (6) does not have a measure of TC intensity. While this
leads to lesser skill of the statistical predictive equations of
SST cooling, this framework could potentially be more useful
in a statistical–dynamical model such as SHIPS because of the
codependent nature of SST and storm intensity (i.e., the SST
cooling equations are used to predict MSLP, which is a vari-
able in the equations themselves).

c. Equations in shallow water regions

As stated earlier, all of the above equations are built for
areas with water depths greater than 100 m. Since these algo-
rithms are built for use in a statistical–dynamical forecast
model such as SHIPS, we still need to consider an algorithm
for shallow water regions. Figure 6a shows the distribution for
the SST cooling equation in shallow water with the best over-
all predictive skill. Since shallow water regimes cannot con-
tain any ocean structure variables since the satellite-based
products do not extend all the way to the shore, the variables
used are ISST, MSLP, storm translation speed, and latitude.
Like in predictive Eq. (5), ISST is fit as a third-order polyno-
mial and there are two piecewise equations separated about a
MSLP value of 985 mb. Note that the equations piecewise
about 990 mb had slightly better statistics, but we show piece-
wise about 985 mb for equal comparison with predictive
Eq. (5). The predicted SST cooling from the shallow water
equation has an overall r2 value of 0.51, MAE of 0.618C, maxi-
mum predictive error of 3.98C, and 51.1% of cases with pre-
dictive error less than 0.58C.

An important question is whether there is added value to
having an independent set of equations for shallow water re-
gions. The new SST cooling equations are designed to im-
prove intensity forecasting and storms will not spend much
time over these waters before landfall which limits the effect
on intensity change. More critically, imposing two different
sets of equations in a model would require buffer rooms be-
tween the deep and shallow water regimes to smooth disconti-
nuities. To assess the added value of shallow water equations,

TABLE 2. A comparison of statistics for four different groups of variables to form a predictive equation for SST cooling. All of
these equations use a cubic polynomial for the ISST distribution and a piecewise function for OHC values about 60 kJ cm22.
Variables are DSST: change in SST, ISST: the initial prestorm SST, OHC: the ocean heat content, D26: depth of the 268C isotherm,
MSLP: minimum sea level pressure, LAT: latitude, and TSPEED: storm translation speed.

Predictive Eq. (2):
DSST 5 f(ISST,
OHC, MSLP)

Predictive Eq. (3):
DSST 5 f(ISST,

OHC, D26, MSLP)

Predictive Eq. (4):
DSST 5 f(ISST,
OHC, MSLP,

LAT)

Predictive Eq. (5):
DSST 5 f(ISST,
MSLP, TSPEED,

LAT)

Predictive Eq. (6):
DSST 5 f(ISST,
OHC, TSPEED,

LAT)

Coefficient of determination (r2) 0.633 0.843 0.855 0.708 0.714
Mean absolute error (8C) 0.289 0.191 0.195 0.391 0.261
Maximum predictive error (8C) 1.85 1.304 0.887 1.763 1.274
Percent of cases with predicted

SST error , 0.58C
83.9% 95.4% 91.9% 72.9% 82.4%
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we evaluate predictive Eq. (5) for shallow water data (Fig. 6b).
Using this equation, the predicted SST cooling in shallow water
has an overall r2 value of 0.40, MAE of 0.698C, maximum pre-
dictive error of 4.08C, and 45.7% of cases with predictive error
less than 0.58C. While there is some improvement in predictive
skill, a future study should evaluate the potential benefit of
having a separate equation for SST cooling for TC intensity
forecasts given the aforementioned challenges of predicting
SST cooling in shallow waters using statistical methods and
with the relatively small degradation in MAE and maximum
predictive error in SST cooling between the two equations in
Fig. 6.

d. SST cooling relationships using a 24-h mean
prestorm SST

As stated in section 3a, to be compatible with daily-
produced satellite-based SST products such as the Reynolds
SST (Reynolds et al. 2007), we build alternative predictive equa-
tions using a 24-h mean prestorm SST (called ISST_Mean).
With SST cooling largely limited prior to 200 km ahead of storm
passage (Fig. 2a), we define ISST_Mean as the 24-h averaged
SST ending when the storm is within 200-km radius of a
buoy. Since the predictive equations described earlier in this
manuscript use an ISST that is defined as the maximum SST
before storm arrival, the change in SST is always reduced
when using ISST_Mean (Fig. 7a). While there is no significant
trend between ISST and ISST_Mean, the latter can be up to
1.78C cooler than ISST. The largest value of ISST_Mean is
;318C (Fig. 7b), as opposed to 348C for ISST, which lowers
the likelihood that some of the cases represent a skin tempera-
ture and not an SST. Changing the prestorm SST definition
also leads to a reduced spread in SST cooling, with more cases
closer to zero, and even some cases with increasing SST during
storm passage, likely due to oceanic barrier layers.

While the general trends of the correlations are similar to
Fig. 4a, a consequence of the reduced spread in SST cooling is
the reduced ability of the third-order polynomial to capture
large changes in SST. When using ISST_Mean as a single vari-
able predictor, the largest predicted SST cooling using a third-
order polynomial is ;1.58C, only ;0.58C more SST cooling
than using a linear relationship. Similar trends for SST cooling
appear for all single variable predictors using ISST_Mean as
in Fig. 4 (not shown), though there are mixed statistical differ-
ences with both a lower r2 value and a lower MAE with using
ISST_Mean.

The lack of an ability to capture the high SST cooling cases
when using a higher-order polynomial for ISST_Mean leads
to an underprediction of SST cooling in the final predictive
equations that use four variables when the actual cooling is
high (Fig. 7c). Overall, when using the same variables as pre-
dictive Eq. (1) (and Fig. 5a), the r2 is lower and maximum
error is higher (1.48 vs 1.08C) when using ISST_Mean. Addi-
tionally, the underprediction of large SST cooling cases does
not fix the same issue using the current algorithm utilized in
SHIPS (Fig. 5b). However, the lower spread in SST cooling
when using ISST_Mean leads to a greater percent of cases
have a forecasted SST error less than 0.58C (93.1% vs 87.4%).
Since an end user of the predictive equations may want to
compare the tradeoffs of more cases of increased accuracy,
but larger potential errors and an underprediction of large
SST cooling cases when using ISST_Mean (as opposed to
ISST) for a prestorm SST, we provide predictive equations us-
ing the same set as variables as using ISST in Table A3.

4. Discussion and conclusions

Since the early theories for TC intensification (e.g., Malkus
and Riehl 1960; Emanuel 1986), the SST has been identified
as a key metric for TCs because it relates to the surface

FIG. 6. A comparison between the predictive equations containing initial SST, minimum sea level pressure, storm translation speed, and
latitude. (a) The equation is built using points in shallow water (ocean bottom depths less than 100 m). (b) The equation built for deep
water is applied to shallow water. In both plots, the functions are piecewise for minimum sea level pressure about 985 mb, and a 1:1 line is
plotted to indicate the perfect predictive equation. Statistics for each equation as well as overall statistics are displayed for each panel.
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sensible heat and latent heat fluxes. However, to date, no reli-
able instrument platform has been established to continuously
measure the SST in the inner core of a TC as it translates
across ocean basins. Satellite-based SST products provide the
greatest spatial distribution of measurements. However, satellite-
based measurements are notoriously unreliable in cloudy con-
ditions, which means the SST cooling cannot be accurately
measured at a given location during storm passage. Aircraft-
based expendables (e.g., AXBTs, drifters) can measure the
in-storm SST, but their use is limited to TCs sampled by recon-
naissance aircraft and provide no information on the quies-
cient, initial SST conditions prior to storm passage. Long
duration motorized autonomous vehicles (saildrones, gliders)
and Lagrangian floats can sample the evolution of the upper
ocean, but generally traverse too slowly to stay in the inner
core of a TC. With the limitations of these observational plat-
forms, prediction of inner-core SST using statistical methods
becomes highly desirable.

While there is a lot of literature about the cold wake SST,
or SST cooling that occurs multiple inertial periods after
storm passage, significantly less research exists related to SST
cooling directly under the storm core. In-storm SST cooling
was documented by Cione and Uhlhorn (2003) using buoy
time series for 23 Atlantic, Gulf of Mexico, and Caribbean
TCs between 1975 and 2002. Based on the results from Cione
and Uhlhorn (2003), an SST cooling algorithm was created
for the SHIPS operational forecast model. With the buoy
database expanded to include time series through 2017, this
study evaluated and updated the SST cooling algorithms such
that they can potentially be used in existing statistical–dynam-
ical models (e.g., SHIPS, LGEM, RI index).

The first step to building an SST cooling algorithm is to
evaluate how individual predictors relate to SST cooling. All
the predictors were evaluated for water depths greater than
100 m to eliminate coastal dynamics of each basin which can-
not be accounted for in statistical modeling. The best predic-
tor for SST cooling using a linear function is the maximum
prestorm SST (ISST). However, using a linear regression
model does not encapsulate the enhanced SST cooling at
higher (;greater than 308C) ISST values, and a third-order
regression model was deemed to best model the observed
ocean behavior. The predicted SST cooling from the OHC,
derived from the SMARTS database (Meyers et al. 2014),
has a lower r2 value than the ISST. However, OHC provides
a good “rule of thumb” with only one case of SST cooling
greater than 18C occurring in OHC values greater than
60 kJ cm22. There are similar conclusions about other
ocean structure variables: MLD, D26, and D20.

Another variable that has received a lot attention in the lit-
erature is sea surface salinity (SSS) because freshwater can in-
crease stability, which reduces turbulent mixing of cooler
waters into the oceanic mixed layer. Without a long-term
database, we tested the relationship between SST cooling
with: SSS values measured from the SMAP mission that only
goes back to 2011, monthly climatological SSS values from
the WOA, and a daily climatology of reduced gravity from
SMARTS which can capture changes to the upper-ocean
stratification due to freshwater. With these limited databases,

FIG. 7. (a) The comparison of maximum prestorm SST (ISST)
with the difference between the 24-h mean SST prior to storm ar-
rival (ISST_Mean). (b) As in Fig. 4a, but using ISST_Mean as a
prestorm SST. (c) As in Fig. 5a, but for using ISST_Mean as a pres-
torm SST.
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no salinity or ocean stratification product had a strong rela-
tionship to SST cooling. Thus, it was not able to be included
in the statistical relationships.

The last variables tested were storm parameters such as
MSLP, MAXWS, latitude, and storm translation speed. The
strongest linear relationship between SST cooling and these
variables is storm translation speed, with an r2 value of 0.11
and a MAE of 0.688C. While the linear relationship is not as
strong, all the SST cooling values except one greater than
28C occur in latitudes higher than 258N. SST cooling values
greater than 28C occur over large ranges of MSLP and
MAXWS values, signifying that storm intensity alone is a
weak predictor for SST cooling.

Predictive equations were built using two, three, four, and
five of the variables described above. We determined that the
combination of four variables generally led to the best predic-
tion of SST cooling without overfitting (i.e., obtaining a r2 of
approximately 1). For all the predictive equations, fitting
ISST as a third-order function and having piecewise functions
for OHC regimes higher and lower than 60 kJ cm22 led to the
best statistical relationships. The top predictive equations
take into account the ISST, information about the upper-
ocean thermal structure (e.g., OHC, MLD, D26), the storm
intensity, and latitude. Of note, using either MSLP or
MAXWS for storm intensity in predictive equation yields
very similar predictive skill. These variables are consistent
with what was deemed important for in-storm SST cooling us-
ing linear theory in Lu et al. (2021). In total, six predictive
equations were deemed to best predict SST cooling, with the
overall most representative being a function of ISST, OHC,
MLD, and MSLP. As compared to the current SST cooling
equation in SHIPS, the new equation eliminates a low bias in
SST cooling when the actual SST cooling is large. The low
bias primarily in the current equation is due to the equation
being linear. Of note, we repeated the above analysis, using a
24-h averaged prestorm SST (ISST_Mean). Using ISST_
Mean, there was a reduced range of SST cooling outcomes
and the higher-order polynomial was unable to capture large
changes in SST. Thus, predictive equations using ISST_Mean
had more cases with error less than 0.58C, but had larger max-
imum errors and an underprediction of SST cooling when the
actual cooling was large. Last, we derived a separate equation
for shallow water (,100-m depth), but the improvements
over the deep-water equations were not significant which is
likely due to the complex bathymetry and dynamics unique to
each shallow-water region.

We suggest a follow up study to evaluate the performance
of these equations for TC intensity forecasts in a statistical–

dynamical model such as SHIPS (and perhaps other models
including LGEM and the RI index). Preliminary evaluations
with the SHIPS science team indicate that one must be careful
about applying nonlinear equations outside of the domain
they were built in. It is important to note that these equations
are neither meant to perfectly forecast the SST cooling at any
given location nor account for all possible physical factors po-
tentially in play. For example, this analysis did not include the
effects of radiation on the SST cooling. Regardless of the im-
plication of the equations, the results in this manuscript dem-
onstrate how SST cooling underneath a storm is related to the
initial SST, the ocean structure, the latitude (inertial period),
and the strength and translation speed of the storm. Last, due
to sample size constraints, we only created predictive equa-
tions for underneath the inner core of a TC, but future work
with larger datasets can create predictive relationships for
SST at different radii and azimuths.

Acknowledgments. The authors greatly appreciate the com-
ments and insights from Mark DeMaria, Galina Chirokova,
and John Kaplan for discussions about SHIPS model and how
to implement SST cooling equations into that infrastructure. J.
Wadler was generously supported by the ERAU Faculty Inno-
vative Research in Science and Technology (FIRST) Program
and the NOAA Office of Marine and Aviation Operations
Uncrewed Systems Office. S. Michlowitz was supported on this
project by the NOAA Hollings Program. We greatly appreci-
ate NOAA’s NDBC for the hard task of maintaining the
buoys at sea. The comments from three anonymous reviewers
greatly helped to improve the manuscript.

Data availability statement. NDBC data are freely available
at https://www.ndbc.noaa.gov/ and SHIPS data are available at
https://rammb2.cira.colostate.edu/research/tropical-cyclones/ships.
Parties interested in obtaining other observations associated with
the TCBD should contact Joseph Cione (joe.cione@noaa.gov).

APPENDIX

Predictive SST Cooling Equations

Table A1 shows the coefficient of determination for all lin-
ear best-fit lines for all combinations of 2, 3, and 4 variables.
Tables A2 and A3 show the final predictive equations using
ISST and ISST_Mean, respectively. Both Tables A2 and A3
also show the final predictive equation for shallow water for
their respective prestorm SST definition.
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TABLE A2. A table of the SST predictive equations created in the manuscript. Of note, the equations are written in MATLAB
syntax, so a dot in front of an operator indicates an element-wise operation.

Predictive Eq. (1) IF OHC,560
Delta_SST 5 f(x1 5 ISST,

x2 5 OHC, x3 5 MLD,
x4 5 MSLP)

@(x1,x2,x3,x4)1 6.9436619.*x41233.427523.*x31 0.01387629.*x3.*x41 63.244107.*x2120.057074202.*x2.*
x4120.056831412.*x2.*x31 9.1903726e-05.*x2.*x3.*x41 306.33804.*x1120.4250965.*x1.*x41 1.998559.*
x1.* x3120.00062327816.*x1.*x3.*x4122.4100781.*x1.*x21 0.0018982352.*x1.*x2.*x4120.0012152313.*
x1.*x2.*x3122.1550766.*x1.

∧
21 0.0065130921.*x1.

∧
2.*x4120.024201002.*x1.

∧
2.*x31 0.010371682.*

x1.
∧
2.*x2125849.4223.*1120.054014451.*x1.

∧
3

IF OHC.60
@(x1,x2,x3,x4)1 34.5719996.*x41 21.2029048.*x3120.0196512659.*x3.*x41222.9444119.*x21

0.0207946141.*x2.*x4120.00768116675.*x2.*x31 2.37796235e-06.*x2.*x3.*x41 2100.41087.*x11
22.41682892.*x1.*x4120.786422129.*x1.*x31 0.000674778977.*x1.*x3.*x41 0.871443085.*x1.*x21
20.000714016613.*x1.*x2.*x41 0.000183697645.*x1.*x2.*x31231.8100404.*x1.

∧
21 0.0422141446.*

x1.
∧
2.*x41 0.00199140006.*x1.

∧
2.*x3120.00286693526.*x1.

∧
2.*x21231366.2389.*1120.113974699.*x1.

∧
3

Predictive Eq. (2) IF OHC,560
Delta_SST 5 f(x1 5 ISST,

x2 5 OHC, x3 5 MSLP)
@(x1,x2,x3)121.3926958.*x31 14.367177.*x2120.012636651.*x2.*x312103.90755.*x11 0.1106579.*x1.*x31

20.60033536.*x1.*x21 0.00046094506.*x1.*x2.*x31 2.1733786.*x1.
∧
2120.002177312.*x1.

∧
2.*x31

0.0027820378.*x1.
∧
2.*x21 1274.534.*1120.0031188281.*x1.

∧
3

IF OHC.60
@(x1,x2,x3)1 24.0380889.*x31222.3879585.*x21 0.0172793372.*x2.*x31 1405.60748.*x11

21.71011642.*x1.*x31 0.932499136.*x1.*x2120.00058764566.*x1.*x2.*x31220.4524081.*x1.
∧
21

0.0303615465.*x1.
∧
2.*x3120.00581328192.*x1.

∧
2.*x21220921.9752.*1120.107407925.*x1.

∧
3

Predictive Eq. (3) IF OHC,560
Delta_SST 5 f(x1 5 ISST,

x2 5 OHC, x3 5 D26,
x4 5 MSLP)

@(x1,x2,x3,x4)1 10.6485202.*x41 8.57762034.*x31 0.0125136031.*x3.*x41 1.1862148.*x21
20.0143065006.*x2.*x4120.051586209.*x2.*x31 9.09499371e-05.*x2.*x3.*x41 1004.07383.*x11
20.755861502.*x1.*x4120.950342567.*x1.*x3120.000562883674.*x1.*x3.*x41 0.512115344.*x1.*x21
0.000330511211.*x1.*x2.*x4120.00137418272.*x1.*x2.*x31221.4034106.*x1.

∧
21 0.0136379476.*

x1.
∧
2.*x41 0.0271052768.*x1.

∧
2.*x3120.0133962962.*x1.

∧
2.*x21213241.3553.*11 0.0788739494.*x1.

∧
3

IF OHC.60
@(x1,x2,x3,x4)1 35.4814552.*x41 8.26625742.*x3120.0599710779.*x3.*x41238.1797615.*x21 0.0719389865.*

x2.*x4120.0152872693.*x2.*x31 5.80301834e-06.*x2.*x3.*x41 462.031233.*x1122.48564738.*x1.*x41
1.52942015.*x1.*x31 0.00204157934.*x1.*x3.*x41 0.194278396.*x1.*x2120.0024862272.*x1.*x2.*x41
0.000325351936.*x1.*x2.*x31 24.6815421.*x1.

∧
21 0.0435663634.*x1.

∧
2.*x4120.0616712684.*x1.

∧
2.*x31

0.0389111247.*x1.
∧
2.*x21215500.4356.*1120.766453038.*x1.

∧
3

Predictive Eq. (4) IF OHC,560
Delta_SST 5 f(x1 5 ISST,

x2 5 OHC, x3 5 MSLP,
x4 5 LATITUDE)

@(x1,x2,x3,x4)12126.4253.*x41 5.182775.*x31 0.0330316.*x3.*x4121.34145.*x2120.008530941.*x2.*x41
0.01503597.*x2.*x3120.0001739394.*x2.*x3.*x41 27.6741.*x11 7.958869.*x1.*x4120.4190176.*x1.*x31
20.001001465.*x1.*x3.*x4120.4504566.*x1.*x21 0.006595046.*x1.*x2.*x4120.000370415.*x1.*x2.*x31
2.923315.*x1.

∧
2120.1294736.*x1.

∧
2.*x41 0.008188432.*x1.

∧
2.*x31 0.01177633.*x1.

∧
2.*x21

2847.0457.*1120.09510695.*x1.
∧
3

IF OHC.60
@(x1,x2,x3,x4)1 140.264671.*x41 15.4237518.*x3120.155903464.*x3.*x41 30.465315.*x21

0.0563635586.*x2.*x4120.0127297001.*x2.*x31 1.59013936e-05.*x2.*x3.*x41 787.732311.*x11
24.35794232.*x1.*x4120.893204609.*x1.*x31 0.00533639419.*x1.*x3.*x4121.68015028.*x1.*x21
20.00246502568.*x1.*x2.*x41 0.000429819533.*x1.*x2.*x3127.97577815.*x1.

∧
2120.0152162285.*x1.

∧
2.*

x41 0.0124853872.*x1.
∧
2.*x31 0.0220157793.*x1.

∧
2.*x21214646.9689.*1120.0619282982.*x1.

∧
3

Predictive Eq. (5) IF MSLP,5985
Delta_SST 5 f(x1 5 ISST,

x2 5 MSLP, x3 5

STORM SPEED,
x4 5 LATITUDE)

@(31,x2,x3,x4)12135.88253.*x41230.312011.*x3121.195269.*x3.*x4125.6791571.*x21 0.15430333.
*x2.*x41 0.010123488.*x2.*x31 0.00068381148.*x2.*x3.*x412275.09857.*x11 4.6325659.*x1.*x41
2.7074664.*x1.*x31 0.017524558.*x1.*x3.*x41 0.23588608.*x1.*x2120.0055744728.*x1.*x2.*x41
20.0007500941.*x1.*x2.*x31 3.1186802.*x1.

∧
21 0.010344265.*x1.

∧
2.*x4120.04280651.*x1.

∧
2.*x31

20.0011861908.*x1.
∧
2.*x21 5801.2451.*1120.024958009.*x1.

∧
3

IF MSLP.985
@(x1,x2,x3,x4)1240.864903.*x41221.267591.*x31 1.3675633.*x3.*x4120.59145086.*x21

0.038790321.*x2.*x41 0.024442491.*x2.*x3120.0016657316.*x2.*x3.*x412108.16384.*x11
1.2181939.*x1.*x4120.21324181.*x1.*x31 0.010970859.*x1.*x3.*x4120.0029472393.*x1.*x21
20.00099130535.*x1.*x2.*x41 0.00024033753.*x1.*x2.*x31 3.2664319.*x1.

∧
2120.0055661847.*

x1.
∧
2.*x4120.0051903209.*x1.

∧
2.*x31 0.0005944699.*x1.

∧
2.*x21 1636.4917.*1120.0437288.*x1.

∧
3
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TABLE A2. (Continued)

Predictive Eq. (6) IF OHC,560
Delta_SST 5 f(x1 5 ISST,

x2 5 OHC, x3 5 STORM
SPEED (m s21),
x4 5 LATITUDE)

@(x1,x2,x3,x4)1 30.84379.*x41 132.96518.*x31 0.2373509.*x3.*x41 25.883353.*x2120.084529611.*x2.
*x4120.22099567.*x2.*x3120.0011999698.*x2.*x3.*x41 199.09073.*x1122.1333468.*x1.*x41
29.3645509.*x1.*x3120.006570972.*x1.*x3.*x4121.717113.*x1.*x21 0.0034007053.*x1.*x2.*x41
0.0089100852.*x1.*x2.*x3123.6878833.*x1.

∧
21 0.036163757.*x1.

∧
2.*x41 0.16307656.*x1.

∧
2.*x31

0.027980046.*x1.
∧
2.*x2122790.5599.*11 0.0054993075.*x1.

∧
3

IF OHC.60
@(x1,x2,x3,x4)1229.3749631.*x41 74.3495696.*x3120.404942718.*x3.*x41 13.9333152.*x21 0.11908507.*

x2.*x41 0.0733093834.*x2.*x3122.72754406e-05.*x2.*x3.*x41 1035.43002.*x11 1.86741299.*x1.*x41
24.89842088.*x1.*x31 0.0141589264.*x1.*x3.*x4121.05240501.*x1.*x2120.00403138961.*x1.*x2.*x41
20.00242602385.*x1.*x2.*x31234.5751003.*x1.

∧
2120.0296904893.*x1.

∧
2.*x41 0.0800944356.*x1.

∧
2.*

x31 0.0196564195.*x1.
∧
2.*x21210294.1716.*11 0.383330478.*x1.

∧
3

Shallow water predictive
equation

IF MSLP,5985

Delta_SST 5 f(x1 5 ISST,
x2 5 MSLP,
x3 5 STORM SPEED,
x4 5 LATITUDE)

@(x1,x2,x3,x4)1226.724287.*x41 66.916018.*x3121.9076994.*x3.*x4124.8440546.*x21 0.0081996127.*
x2.*x4120.031723382.*x2.*x31 0.0012554869.*x2.*x3.*x412343.47352.*x11 1.9717191.*x1.*x41
21.4843114.*x1.*x31 0.024518816.*x1.*x3.*x41 0.32618279.*x1.*x2120.00048211325.*x1.*x2.*x41
20.0003654624.*x1.*x2.*x31 5.5658943.*x1.

∧
2120.029771321.*x1.

∧
2.*x41 0.019828937.*x1.

∧
2.*x31

20.0052260253.*x1.
∧
2.*x21 5030.1538.*11 0.0016209537.*x1.

∧
3

IF MSLP.985
@(x1,x2,x3,x4)12286.82335.*x41236.4868214.*x3120.303936264.*x3.*x41213.2189813.*x21

0.305495913.*x2.*x41 0.0627888391.*x2.*x3120.000310948656.*x2.*x3.*x412563.810952.*x11
9.4542871.*x1.*x41 0.899621075.*x1.*x31 0.0228238679.*x1.*x3.*x41 0.576695403.*x1.*x21
20.0106227791.*x1.*x2.*x4120.00218173773.*x1.*x2.*x31 4.34662958.*x1.

∧
21 0.0176153579.*

x1.
∧
2.*x41 0.0114815898.*x1.

∧
2.*x3120.00396021805.*x1.

∧
2.*x21 12835.3474.*11

20.0125266855.*x1.
∧
3
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TABLE A3. As in Table A2, but using a 24-h mean prestorm SST (ISST_Mean) instead of the maximum prestorm SST (ISST).
Of note, the equations are written in MATLAB syntax, so a dot in front of an operator indicates an element-wise operation.

Predictive Eq. (1) IF OHC,560
Delta_SST 5 f(x1 5 ISST_Mean,

x2 5 OHC, x3 5 MLD,
x4 5 MSLP)

@(x1,x2,x3,x4)1 -1.9160562.*x41229.056139.*x31 0.024400487.*x3.*x41 25.895754.*x21
20.022892469.*x2.*x4120.093659847.*x2.*x31 9.5455209e-05.*x2.*x3.*x412265.34708.*x11
0.13636362.*x1.*x41 1.3311489.*x1.*x3120.00098868553.*x1.*x3.*x4120.93766597.*x1.*x21
0.00070771313.*x1.*x2.*x4127.3643093e-05.*x1.*x2.*x31 7.0205213.*x1.

∧
2120.0022867748.*x1.

∧
2.*

x4120.006292974.*x1.
∧
2.*x31 0.0044163735.*x1.

∧
2.*x21 3091.5508.*1120.058130676.*x1.

∧
3

IF OHC.60
@(x1,x2,x3,x4)1 44.9417786.*x41 57.8217806.*x3120.0375417357.*x3.*x41238.7620801.*x21

0.0246436615.*x2.*x4120.0169120038.*x2.*x31 2.81370896e-05.*x2.*x3.*x41 3685.78638.*x11
23.13722219.*x1.*x4122.63903664.*x1.*x31 0.00122323197.*x1.*x3.*x41 1.82356742.*x1.*x21
-0.000896685732.*x1.*x2.*x4120.000364670757.*x1.*x2.*x31273.4713927.*x1.

∧
21 0.0548625314.*

x1.
∧
2.*x41 0.0246333731.*x1.

∧
2.*x3120.0152179674.*x1.

∧
2.*x21250299.0621.*11

0.209204646.*x1.
∧
3

Predictive Eq. (2) IF OHC,560
Delta_SST 5 f(x1 5 ISST_Mean,

x2 5 OHC, x3 5 MSLP)
@(x1,x2,x3)1 -6.4643864.*x31214.334783.*x21 0.012350524.*x2.*x312513.70413.*x11

0.43715062.*x1.*x31 0.53991079.*x1.*x2120.00040625044.*x1.*x2.*x31 10.041042.*x1.
∧
21

20.0073915355.*x1.
∧
2.*x3120.0022242977.*x1.

∧
2.*x21 7205.3391.*1120.030768788.*x1.

∧
3

IF OHC.60
@(x1,x2,x3)1 24.0806952.*x31227.691898.*x21 0.0237817587.*x2.*x31 1509.7407.*x11

21.74805685.*x1.*x31 1.07785472.*x1.*x2120.000817808808.*x1.*x2.*x31223.6556137.*x1.
∧
21

0.0316415509.*x1.
∧
2.*x3120.00432064595.*x1.

∧
2.*x21221704.0562.*1120.0894473145.*x1.

∧
3

Predictive Eq. (3) IF OHC,560
Delta_SST 5 f(x1 5 ISST_Mean,

x2 5 OHC, x3 5 D26,
x4 5 MSLP)

@(x1,x2,x3,x4)1 6.2042831.*x41 9.0400407.*x31 0.012021402.*x3.*x41234.469972.*x21
0.01463764.*x2.*x4120.057871413.*x2.*x31 8.7927954e-05.*x2.*x3.*x41 776.66701.*x11
20.49030434.*x1.*x4121.006713.*x1.*x3120.00052744652.*x1.*x3.*x41 2.0509349.*x1.*x21
20.00069208824.*x1.*x2.*x4120.0010858835.*x1.*x2.*x31219.438856.*x1.

∧
21 0.0097900887.*

x1.
∧
2.*x41 0.027945368.*x1.

∧
2.*x3120.02320013.*x1.

∧
2.*x2129014.3284.*11 0.10729427.*x1.

∧
3

IF OHC.60
@(x1,x2,x3,x4)1 34.6872402.*x41 43.933805.*x3120.0569728992.*x3.*x41276.0847299.*x21

0.0854220097.*x2.*x4120.0118381225.*x2.*x31 9.71790775e-06.*x2.*x3.*x41 2420.9874.*x11
22.49295821.*x1.*x4121.01715964.*x1.*x31 0.00193468257.*x1.*x3.*x41 2.31099936.*x1.*x21
20.00297248155.*x1.*x2.*x41 7.7402844e-05.*x1.*x2.*x31242.0192193.*x1.

∧
21 0.044805495.*

x1.
∧
2.*x4120.0161696409.*x1.

∧
2.*x31 0.0117037889.*x1.

∧
2.*x21234067.955.*11

20.0358208116.*x1.
∧
3

Predictive Eq. (4) IF OHC,560
Delta_SST 5 f(x1 5 ISST_Mean,

x2 5 OHC, x3 5 MSLP,
x4 5 LATITUDE)

@(x1,x2,x3,x4)1 -144.13751.*x41 0.68703036.*x31 0.037779468.*x3.*x41222.373939.*x21
20.12093889.*x2.*x41 0.029813403.*x2.*x3128.2211593e-05.*x2.*x3.*x412315.8087.*x11
9.2313392.*x1.*x4120.12627661.*x1.*x3120.0012802066.*x1.*x3.*x41 0.61541175.*x1.*x21
0.0073802028.*x1.*x2.*x4120.00096672748.*x1.*x2.*x31 8.6821285.*x1.

∧
2120.14847711.*x1.

∧
2.

*x41 0.0035584695.*x1.
∧
2.*x31 0.0029580054.*x1.

∧
2.*x21 4283.3374.*1120.099571487.*x1.

∧
3

IF OHC.60
@(x1,x2,x3,x4)1 171.140711.*x41 17.1398719.*x3120.172525557.*x3.*x41 38.8032938.*x21

0.11379356.*x2.*x4120.0184160248.*x2.*x3122.50374919e-05.*x2.*x3.*x41 930.635985.*x11
26.09274309.*x1.*x4120.996322858.*x1.*x31 0.00603582627.*x1.*x3.*x4122.10419091.*x1.*x21
20.00306892865.*x1.*x2.*x41 0.000649570396.*x1.*x2.*x3129.88263469.*x1.

∧
21

0.00362720648.*x1.
∧
2.*x41 0.0139252899.*x1.

∧
2.*x31 0.0259228405.*x1.

∧
2.*x21

216984.3976.*1120.0676851348.*x1.
∧
3

Predictive Eq. (5) IF MSLP,5985
Delta_SST 5 f(x1 5 ISST_Mean,

x2 5 MSLP, x3 5 STORM
SPEED, x4 5 LATITUDE)

@(x1,x2,x3,x4)1 -96.054973.*x412106.45553.*x3121.6203078.*x3.*x4128.0261865.*x21
0.10369266.*x2.*x41 0.12029066.*x2.*x31 0.00095905699.*x2.*x3.*x412517.24253.*x11
3.6874324.*x1.*x41 4.7956644.*x1.*x31 0.023267352.*x1.*x3.*x41 0.42137408.*x1.*x21
20.0038872664.*x1.*x2.*x4120.004864637.*x1.*x2.*x31 8.6510936.*x1.

∧
2120.0025328032.*x1.

∧
2.*x41

20.014077272.*x1.
∧
2.*x3120.0047199674.*x1.

∧
2.*x21 8672.9224.*1120.047872701.*x1.

∧
3

IF MSLP.985
@(x1,x2,x3,x4)1 4.797035.*x41233.21866.*x31 0.6516741.*x3.*x41 2.6370376.*x21

20.0062376743.*x2.*x41 0.030516891.*x2.*x3120.0008628673.*x2.*x3.*x41 93.278365.*x11
20.28113806.*x1.*x41 1.0630202.*x1.*x31 0.007890786.*x1.*x3.*x4120.19574587.*x1.*x21
0.0004403575.*x1.*x2.*x4120.00068582489.*x1.*x2.*x31 0.089510573.*x1.

∧
2120.0039567599.*

x1.
∧
2.*x4120.010236229.*x1.

∧
2.*x31 0.003523817.*x1.

∧
2.*x2121682.6955.*1120.041758772.*x1.

∧
3
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TABLE A3. (Continued)

Predictive Eq. (6) IF OHC,560
Delta_SST 5 f(x1 5 ISST_Mean,

x2 5 OHC, x3 5 STORM
SPEED (m s21), x4 5

LATITUDE)
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x41 0.0050333354.*x1.*x2.*x31 5.1572958.*x1.

∧
2120.017878399.*x1.

∧
2.*x41 0.032227638.*

x1.
∧
2.*x31 0.015070256.*x1.

∧
2.*x21 1253.7436.*1120.063782933.*x1.

∧
3

IF OHC.60
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∧
2.*x21 8254.6753.*1120.49131583.*x1.

∧
3

Shallow water predictive
equation

IF MSLP, 5985

Delta_SST 5 f(x1 5 ISST_
Mean, x2 5 MSLP,
x3 5 STORM SPEED,
x4 5 LATITUDE)

@(x1,x2,x3,x4)1 -131.5421.*x412172.08866.*x31 1.6604429.*x3.*x4127.2484883.*x21
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20.0026925801.*x1.*x2.*x4120.0034152946.*x1.*x2.*x31 9.9885247.*x1.

∧
2120.061937079.*x1.

∧
2.*x41

20.047166773.*x1.
∧
2.*x3120.0053871052.*x1.

∧
2.*x21 9306.165.*1120.033575095.*x1.

∧
3

IF MSLP.985
@(x1,x2,x3,x4)1 -23.821746.*x41225.056483.*x3120.88150189.*x3.*x4120.9974738.*x21

0.024960954.*x2.*x41 0.029439115.*x2.*x31 0.00077131981.*x2.*x3.*x41236.323473.*x11
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∧
21

20.00010554307.*x1.
∧
2.*x41 0.0030133869.*x1.

∧
2.*x31 0.00047900673.*x1.

∧
2.*x21 1063.8643.*11

20.0066518369.*x1.
∧
3
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